Numeric Response Questions

Continuity and Differentiability

Q.1 If f(x) be a continuous function defined for $1 \le x \le 3$, $f(x) \in Q \forall x \in [1,3]$, f(2) = 10, then find value of f(1.8) (where Q is a set of all rational numbers).

Q.2 If the function
$$f(x) = \begin{cases} \frac{\sin \sqrt[3]{x \log (1+3x)}}{(\tan^{-1} \sqrt{x})^2 (e^{5\sqrt{x}}-1)}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
, is continuous at $x = 0$ then find a.

Q.4 Find the value of p, for which $f(x) = \left\{ \sin \left(\frac{x}{p} \right) \log_e \left\{ 1 + \left(\frac{x^2}{3} \right) \right\}, \ x \neq 0 \ \text{is continuous at } x = 0,$

Q.5 If
$$f(x) = \begin{cases} \frac{1-\sqrt{2}\sin x}{\pi-4x}; x \neq \frac{\pi}{4} \\ a; x = \frac{\pi}{4} \end{cases}$$
 is continuous at $x = \frac{\pi}{4}$ then find value of a .

Q.6 If
$$f(x) = \begin{cases} \frac{2^x - 1}{\sqrt{1 + x} - 1}, -1 \le x < \infty, x \ne 0 \\ k, x = 0 \end{cases}$$
 is continuous everywhere, then k is equal to loge λ then

find λ

Q.7 Find the value of f(0), so that the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ is continuous at each point in its domain.

Q.8 Let
$$f(x) = (\sin x)^{\frac{1}{n-2x}}, x \neq \frac{\pi}{2}$$
, If $f(x)$ is continuous at $x = \frac{\pi}{2}$ then find the value of $f(\frac{\pi}{2})$.

Q.9 Find the number of points at which function $f(x) = |x - 0.5| + |x - 1| + \tan x$, does not have a derivative in the interval (0,2)

Q.10 Find the value of b such that the function
$$f(x) = \begin{cases} ax + 3, & x \ge 1 \\ x^2 + b, & x < 1 \end{cases}$$
 is continuous and differentiable at $x = 1$

Q.11 If
$$f(x) = \begin{cases} e^x & x < 1 \\ a - bx & x \ge 1 \end{cases}$$
 is differentiable for $x \in \mathbb{R}$ then find value of $\left(a - \frac{b}{e}\right)$.

Q.12 Find number of non-differentiable point for $f(x) = \min(\sin x, \cos x)$ is (if $x \in (0.4\pi)$).

Q.13 Find the number of points where f(x) = ||x| - 1| is not differentiable.

Q.14 If the function
$$g(x) = \begin{cases} k\sqrt{x+1}, & 0 \le x \le 3 \\ mx+2, & 3 < x \le 5 \end{cases}$$
 is differentiable, then find the value of $k+m$.

Q.15 Suppose $\Omega(x)$ is differentiable at x = 1 and $\lim_{h \to 0} \frac{1}{h} \rho(1+h) = 5$, then find f'(1).

ANSWER KEY

1. 10.00

2. 0.60

3. 6.00

4. 4.00

5. 0.25

6. 4.00

7. 0.33

8. 1.00

9. 3.00

10. 4.00

11. 1.00

12. 4.00

13. 3.00

14. 2.00

15. 5.00

Hints & Solutions

1. \therefore f(x) \in Q = f(x) is constant function

$$\therefore \quad f(2) = 10$$

$$\Rightarrow$$
 f(1.8) = 10

2.
$$\lim_{x \to 0} \left(\frac{\sin x^{1/3}}{x^{1/3}} \cdot \frac{\log(1+3x)}{3x} \cdot \left(\frac{\sqrt{x}}{\tan^{-1} \sqrt{x}} \right)^2 \cdot \frac{5\sqrt[3]{x}}{e^{5\sqrt[3]{x}} - 1} \cdot \frac{3}{5} \right)$$

= 1.1. (1)².1.
$$\frac{3}{5} = \frac{3}{5}$$

 \therefore then function f is continuous at x = 0 if

$$a = \frac{3}{5}$$

3. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{3}{x^{2}} \sin 2x^{2}$

$$=6 \lim_{x\to 0} \frac{\sin 2x^2}{2x^2} = 6$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 + 2x + c}{1 - 3x^2} = \frac{c}{1} = c$$

Hence for f to be continuous c = 6.

4. $\lim_{x \to 0} \frac{(4^x - 1)^3}{\sin(x/p)\log_e \left(1 + \frac{x^2}{3}\right)} = 12 (\log_e 4)^3$

$$\lim_{x \to 0} \frac{\left(\frac{4^{x} - 1}{x}\right)^{3} x^{3}}{\left(\frac{\sin(x/p)}{(x/p)}\right)\left(\frac{x}{p}\right) \left(\frac{\log(1 + (x^{2}/3))}{x^{2}/3}\right) x^{2}/3}$$

$$= 12(\log_e 4)^3$$

 $3p(\log_e 4)^3 = 12(\log_e 4)^3$

$$p = 4$$

5. (L' Hospital Rule)

For continuous value = limit

$$\Rightarrow a = \ell t \frac{1 - \sqrt{2} \sin x}{\pi - 4x}$$

$$\Rightarrow$$
 a = $\frac{1}{4}$.

6. $k = \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1}$

$$= \lim_{x \to 0} \frac{2^x - 1}{x} \times (\sqrt{1 + x} + 1)$$

$$= 2 \log 2 = \log 4$$

7. $f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}, \ \frac{0}{0}$

$$= \lim_{x \to 0} \frac{2 - \frac{1}{\sqrt{1 - x^2}}}{2 + \frac{1}{1 + x^2}} = \frac{1}{3}$$

8. If function is continuous at $x = \pi/2$.

$$f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} f(x)$$

$$= \lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\pi - 2x}}, 1^{\infty}$$

$$= \lim_{x \to \frac{\pi}{2}} e^{\frac{1}{\pi - 2x}(\sin x - 1); \left(\frac{0}{0}\right)}$$

$$= \lim_{x \to \frac{\pi}{2}} e^{\frac{\cos x - 0}{0 - 2}; \text{ (by using L' Hospital rule)}}$$

$$= e^{\frac{0}{-2}} = 1$$

9. We have, y = |x - a| is not differentiable at

 \therefore f(x) is not differentiable at $x = \frac{1}{2}$ and x = 1

Also tan *x* is not differentiable at $x = \frac{\pi}{2}$

Hence f(x) is not differentiable at three points in (0, 2)

Since the function is continuous at x = 1, 10.

$$\lim_{h \to 0} f(1+h) = \lim_{h \to 0} f(1-h) = f(1)$$

Now.

$$\lim_{h \to 0} f(1-h) = \lim_{h \to 0} \left[(1-h)^2 + b \right] = 1 + b$$

$$\lim_{h \to 0} f(1+h) = \lim_{h \to 0} \left[a(1+h) + 3 \right]$$

= a + 3 and f(1) = a + 3

Hence, a + 3 = 1 + b, or b = a + 2

Since the function is differentiable at x = 1, we have $f'(1^+) = f'(1^-).$

We obtain

$$f'(1^{+}) = \lim_{h \to 0} \frac{1}{h} [f(1+h) - f(1)]$$
$$= \lim_{h \to 0} \frac{1}{h} [\{a(1+h) + 3\} - (a+3)]$$
$$= a$$

$$f'(1^{-}) = \lim_{h \to 0} \frac{1}{(-h)} [f(1-h) - f(1)]$$

$$= \lim_{h \to 0} \frac{1}{(-h)} [\{(1-h)^{2} + b\} - (a+3)]$$

$$= \lim_{h \to 0} \frac{1}{(-h)} [\{(1-2h+h^{2} + b\} - (1+b)]$$

$$= \lim_{h \to 0} \frac{1}{(-h)} [h^{2} - 2h] = 2$$

Therefore, a = 2 and b = a + 2 = 4

11. As f(x) is differentiable at x = 1so it will be continuous also so a - b = eas f(x) is differentiable at x = 1so -b = e... (2) from (1) and (2)

12.

point of discontinuity in $(0, 2\pi) = 2$ so point of discontinuity in $(0, 2n\pi) = 2n$ (continuous)

13. f(x) = ||x| - 1|

so f(x) is not differentiable at x = -1, 0, 1

14. Since function is differentiable at x = 3it must be continuous at x = 3, also

$$f(3) = f(3 + h)$$

$$= f(3 - h)$$

$$k\sqrt{3+1} = \lim_{h\to 0} m(3+h) + 2$$

$$= \lim_{h \to 0} k\sqrt{3 - h + 1}$$

... (1)

$$2k = 3m + 2 = 2k$$

Now differentiable at x = 3

$$f'(3+h)=m$$

$$f'(3-h) = \frac{d}{dx}(k\sqrt{x+1})$$

$$= k \frac{1}{2\sqrt{x+1}}$$

at
$$x = 3$$
, $\frac{k}{4}$

hence
$$m = \frac{k}{4}$$

$$k = 4m$$
 ... (2)

Solving (1) and (2) we get

$$m = \frac{2}{5}, k = \frac{8}{5}$$

$$k + m = \frac{2}{5} + \frac{8}{5} = 2$$

 $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ **15.**

 \therefore f(x) is differentiable at x = 1

 \therefore it is continuous at x = 1 also

 $\therefore f(1) = \lim_{x \to 1} f(x) = \lim_{h \to 0} f(1+h)$

$$f(1) = \lim_{h \to 0} \frac{h f(1+h)}{h} = 0 \times 5 = 0$$
$$= \lim_{h \to 0} \frac{f(1+h) - 0}{h} = 5$$

b = -e, a = 0